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Noisy Private Information Retrieval:
On Separability of Channel Coding

and Information Retrieval
Karim Banawan , Member, IEEE, and Sennur Ulukus , Fellow, IEEE

Abstract— We consider the problem of noisy private informa-
tion retrieval (NPIR) from N non-communicating databases, each
storing the same set of M messages. In this model, the answer
strings are not returned through noiseless bit pipes, but rather
through noisy memoryless channels. We aim at characterizing
the PIR capacity for this model as a function of the statistical
information measures of the noisy channels such as entropy and
mutual information. We derive a general upper bound for the
retrieval rate in the form of a max-min optimization. We use
the achievable schemes for the PIR problem under asymmetric
traffic constraints and random coding arguments to derive a
general lower bound for the retrieval rate. The upper and
lower bounds match for M = 2 and M = 3, for any N,
and any noisy channel. The lower and upper bounds show a
separation between channel coding and retrieval scheme except
for adapting the traffic ratio from the databases. We refer to this
as almost separation. Next, we consider the private information
retrieval problem from multiple access channels (MAC-PIR).
In MAC-PIR, the database responses reach the user through a
multiple access channel (MAC) that mixes the responses together
in a stochastic way. We show that for the additive MAC and
the conjunction/disjunction MAC, channel coding and retrieval
scheme are inseparable unlike in NPIR. We show that the retrieval
scheme depends on the properties of the MAC, in particular on
the linearity aspect. For both cases, we provide schemes that
achieve the full capacity without any loss due to the privacy
constraint, which implies that the user can exploit the nature of
the channel to improve privacy. Finally, we show that the full
unconstrained capacity is not always attainable by determining
the capacity of the selection channel.

Index Terms— Private information retrieval (PIR), noisy chan-
nels, multiple access channels (MACs), separation of channel
coding and information retrieval.

I. INTRODUCTION

IN THE era of big data, efficient data-mining techniques are
present everywhere, from social media to online-shopping
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and search history. These new challenges motivate studying
the privacy issues that arise in modern networks. Private
information retrieval (PIR), introduced by Chor et al. [1] and
remained an important research avenue in computer science
community (see for example [1]–[5]), is a canonical problem
to study the privacy of the downloaded content from public
databases. In the classical PIR, a user wishes to retrieve a
file privately from N distributed and non-colluding databases
each storing the same set of M messages (files), in a way that
no database can learn the identity of the user’s desired file.
To that end, the user submits queries for the databases that do
not reveal the user’s interest in the desired file. The databases
respond with correct answer strings via noiseless orthogonal
links, from which the user reconstructs the desired file. PIR
schemes are designed to be more efficient than the trivial
scheme of downloading all the files stored in the databases in
terms of the retrieval rate, which is defined as the ratio between
the number of downloaded bits from the desired message and
the total download.

Recently, the PIR problem has attracted a renewed interest
within the information theory community [6]–[10]. In order to
characterize the fundamental limits of the problem, Sun-Jafar
introduced the notion of PIR capacity CPIR in [11], which is
defined as the supremum of all PIR rates over all achievable
retrieval schemes. Reference [11] proved that for the classical
PIR model, CPIR = (1+ 1

N +· · ·+ 1
N M−1 )−1. The achievability

scheme is a greedy algorithm that employs a symmetric query
structure for all databases. Following [11], the capacities of
many interesting variants of the classical PIR problem have
been considered [12]–[43].

In all previous works, the links from the databases to the
user are assumed to be noiseless. Furthermore, these works
assume that the answer strings are returned via orthogonal
links, i.e., the user receives N separate answer strings, which
are not mixed. There are many practical settings where these
assumptions may not be valid. For instance, while browsing
(retrieving information on) the internet, some packets may
be dropped randomly. This scenario can be abstracted out
as passing the answer strings through an erasure channel.
Alternatively, the data packets may be randomly corrupted,
which can be modeled as a binary symmetric channel that flips
randomly some symbols in the answer strings. Consequently,
a more realistic retrieval model may be to assume that the
databases return their answer strings through memoryless
noisy channels with known transition probabilities. The noisy
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nature of the channel induces random errors along the received
answer strings.

Yet, in other applications, the answer strings may be mixed
before reaching the user. For example: if the user is retrieving
the desired file from wireless base stations, the answer strings
would be combined on the air before reaching the user.
Another example is retrieval from a cloud, where the returned
packets may collide and superimpose each other. These prac-
tical settings can be represented with another abstract model,
which is the cooperative multiple access channel1 (MAC)
model, where the databases cooperate to convey the desired
message to the user, while the user receives a stochastic
mapping from the database responses in general. These two
cases, namely, noisy and multiple access nature of retrieval
channels, pose many interesting questions, such as: How to
devise schemes that mitigate the errors introduced by the
channel with a small sacrifice from the private retrieval rate? Is
there a separation between the channel coding needed for reli-
able transmission over noisy channels and the private retrieval
scheme, or if there is a necessity for joint processing? How do
the statistical properties of the noisy channels fundamentally
affect the private retrieval rate?

In this paper, we introduce noisy PIR with orthogonal
links (NPIR) and PIR problem from multiple access channel
(MAC-PIR). We first focus on the NPIR problem and then
consider the MAC-PIR problem in Section VI. In NPIR,
the nth database is connected to the user via a discrete mem-
oryless channel with known transition probability distribution
p(yn|xn). Hence, the user needs to decode the desired message
reliably by observing the noisy versions of the returned
answer strings. Intuitively, since a channel with worse channel
condition needs a lower code rate to combat the channel errors,
we do not expect the lengths of the answer strings to be the
same from all the databases. Therefore, in this work, we allow
the traffic from each database to be asymmetric as in [38]
and [39]. In this work, we aim at characterizing the capacity
of the NPIR problem in terms of the statistical information
measures of the noisy channels such as mutual information,
the number of messages M , and the number of databases N .
To that end, we first derive a general upper bound for the
retrieval rate in the form of a max-min problem. The converse
proof is inspired by the converse proof in [38], in particular in
the way the asymmetry is handled. We show the achievability
proof by random coding arguments and enforcing the uncoded
responses to operate at one of the corner points of the PIR
problem under asymmetric traffic constraints. The upper and
lower bounds match for M = 2 and M = 3 messages, for
arbitrary N databases, and any noisy channel. Our results show
that the channel coding needed to mitigate the channel errors

1We note that by cooperative MAC, we do not mean database collusion
which refers to database communication to try to figure out the identity of the
desired file. Instead, by cooperative MAC, we mean the implicit cooperation
created by the user (retriever) through a careful design of queries. In our
system, there is no explicit communication between the databases, however,
since the user can jointly design the queries to all databases and the databases
respond truthfully to user queries, the responses to the user can be thought of
as codewords from cooperative users in a multiple access channel, i.e., there
is an implicit cooperation in the responses through the joint design of the
queries.

and the retrieval scheme are almost separable in the sense
that the noisy channels affect only the traffic ratio requested
from each database and not the explicit coding technique.
Interestingly, the upper and lower bounds depend only on the
capacity of the noisy channels and not on the explicit transition
probability of the channels.

In the MAC-PIR problem, the responses of the databases
reach the user through a discrete memoryless MAC with a
known transition probability p(y|x1, · · · , xN ). In this case,
the output of the channel is a mixture (possibly noisy mixture)
of all database responses. The user needs to decode the desired
message with vanishingly small probability of error from the
output of the channel. Interestingly, for this model, we show
that channel coding and retrieval strategy are inseparable
unlike in the NPIR problem. We show this fact by deriving
the PIR capacity of two simple MACs, namely: additive MAC,
and logical conjunction/disjunction MAC. In these two cases,
we show that privacy for free can be attained by designing
retrieval strategies that exploit the properties of the channel
to maximize the retrieval rate. Interestingly, we show that for
the additive MAC, the optimal PIR scheme is linear, while
for the logical conjunction/disjunction MAC we show that a
non-linear PIR scheme, that requires N ≥ 2M−1 is needed to
achieve CP I R = 1. We conclude this discussion by showing
that full unconstrained capacity may not be attainable for all
MACs by giving a counterexample, which is the selection
MAC, which has a capacity of CP I R = 1

M . The exact PIR
capacity of the MAC-PIR for an arbitrary transition probability
distribution remains an open problem in general.

II. SYSTEM MODEL

We consider a classical PIR model with N replicated and
non-communicating databases storing M messages. Each data-
base stores the same set of messages W1:M = {W1, · · · , WM }.
The mth message Wm is an L-length binary (without loss of
generality) vector picked uniformly from F

L
2 . The messages

W1:M are independent and identically distributed, i.e.,

H (Wm) =L, m ∈ {1, · · · , M} (1)

H (W1:M) =M L (2)

In PIR, a user wants to retrieve a message Wi reliably and
privately. To that end, the user submits N queries Q[i]

1:N =
{Q[i]

1 , · · · , Q[i]
N }, one for each database. Since the user does

not have any information about the message set in advance,
the queries and the messages are statistically independent,

I (W1:M ; Q[i]
1:N ) = 0, i ∈ {1, · · · , M} (3)

The nth database responds to Q[i]
n with a tn-length answer

string A[i]
n = (X [i]

n,1, · · · , X [i]
n,tn ). The nth answer string is a

deterministic function of the messages W1:M and the query
Q[i]

n , hence,

H (A[i]
n |W1:M , Q[i]

n )=0, n ∈ {1,· · ·,N}, i ∈ {1,· · ·,M} (4)

In noisy PIR with orthogonal links (NPIR, see Fig. 1),
the user receives the nth answer string via a discrete memo-
ryless channel (response channel) with a transition probability
p(yn|xn). In this model, the noisy channels are orthogonal,
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in the sense that the noisy answer strings do not interact
(mix). Thus, the user receives a noisy answer string Ã[i]

n =
(Y [i]

n,1, · · · , Y [i]
n,tn ). Therefore, we have2,

P
(

Ã[i]
n =(y[i]

n,1,· · ·, y[i]
n,tn )|A[i]

n =(x [i]
n,1,· · ·, x [i]

n,tn )
)

=
tn∏

ηn=1

p
(

y[i]
n,ηn

|x [i]
n,ηn

)
(5)

Consequently, (W1:M , Q[i]
n ) → A[i]

n → Ã[i]
n forms a Markov

chain. Let us denote the channel capacity of the nth response
channel by Cn , denote,

Cn = max
p(xn)

I (Xn; Yn) (6)

where Xn , Yn are the single-letter input and output pair for
the nth response channel. Without loss of generality, assume
that the channel capacities are ordered such that C1 ≥ C2 ≥
· · · ≥ CN , i.e., the channel capacities form a non-increasing
sequence. Let C = (C1, · · · , CN ) be the vector of the channel
capacities.

We note that, in general, the user and the databases can
agree on suitable lengths {tn}N

n=1 for the answer strings, which
may not be equal in general, such that they maximize the
retrieval rate. Let us define the traffic ratio vector τ =
(τ1, · · · , τN ) as,

τn = tn∑N
j=1 t j

, n ∈ {1, · · · , N} (7)

To ensure privacy, the queries Q[i]
1:N should be designed

such that the query to the nth database does not reveal any
information about i . We can write the privacy constraint as

(Q[i]
n , A[i]

n , W1:M ) ∼ (Q[ j ]
n , A[ j ]

n , W1:M ), ∀i, j ∈ {1, · · · , M}
(8)

We note that from privacy constraint and due to the Markov
chain (W1:M , Q[i]

n ) → A[i]
n → Ã[i]

n , we may write that
(Q[i]

n , A[i]
n , Ã[i]

n , W1:M ) ∼ (Q[ j ]
n , A[ j ]

n , Ã[ j ]
n , W1:M ), ∀i, j ∈

{1, · · · , M}.
In addition, the user should be able to reconstruct the desired

message Wi by observing the noisy answer strings Ã[i]
1:N with

arbitrarily small probability of error Pe(L), i.e., Pe(L) → 0
as L → ∞. Hence, from Fano’s inequality, we have,

H (Wi |Q[i]
1:N , Ã[i]

1:N ) ≤ 1 + Pe(L) · L = o(L) (9)

where o(L)
L → 0 as L → ∞.

2Here, we comment on the differences between the NPIR model introduced
in this paper and the BPIR model (PIR from Byzantine databases) in [24].
In BPIR, there are B databases that respond arbitrarily untruthfully to the
user queries, i.e., H ( Ã[i]

n |W1:M , Q[i]
n ) > 0 for all n ∈ B such that |B| = B .

The members of the Byzantine database set B are unknown to the user. The
Byzantine databases can respond by any possible error pattern they wish,
i.e., they can use any transition probability distribution for their response
channels. Thus, in BPIR, the user does not have any knowledge about the
transition probability distribution of the response channels unlike in NPIR.
Nevertheless, since the user in BPIR has the knowledge that there are exactly
B Byzantine databases, that setting results in a more structured error pattern
than NPIR here. For these reasons, the two problems are entirely different
and we cannot think of the BPIR problem as an NPIR problem with channel
capacity vector C = {1, 1, · · · , 1, 0, 0, · · · , 0} with B zeros and N − B ones,
and arbitrary placement of ones and zeros. The techniques and the results for
these two problems are different as well.

For a fixed traffic ratio vector τ , the retrieval rate R(τ , C)
is achievable if there exists a sequence of retrieval schemes,
indexed by the message length L, that satisfy the privacy
constraint (8) and the reliability constraint (9) with answer
string lengths {tn}N

n=1 that conform with (7), thus,

R(τ , C) = lim
L→∞

L∑N
n=1 tn

(10)

Consequently, the retrieval rate R(C) is the supremum of
R(τ , C) over all traffic ratio vectors in T = {(τ1, · · · , τN ) :
τn ≥ 0 ∀n,

∑N
n=1 τn = 1}. The PIR capacity for this model

CPIR(C) is given by

CPIR(C) = sup R(C) (11)

where the supermum is over all achievable retrieval schemes.

III. MAIN RESULTS AND DISCUSSIONS ON NPIR

In this section, we present the main results of the NPIR
problem. The first result gives an upper bound for the NPIR
problem.

Theorem 1 (Upper bound) For NPIR with noisy links of
capacities C = (C1, · · · , CN ), the retrieval rate is upper
bounded by,

CPIR(C)

≤ C̄PIR(C)

= max
τ∈T

min
ni∈[N]

θ(0) + θ(n1)
n1

+ θ(n2)
n1n2

+ · · · + θ(nM−1)∏M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1∏M−1
i=1 ni

(12)

where T =
{
τ : τn ≥ 0 ∀n ∈ [1 : N], ∑N

n=1 τn = 1
}

,

[N] = {1, · · · , N} and θ(�) = ∑N
n=�+1 τnCn.

The proof of this upper bound is given in Section IV.
The second result gives an achievability scheme for the NPIR
problem.

Theorem 2 (Lower bound) For NPIR with noisy links of
capacities C = (C1, · · · , CN ), for a monotone non-decreasing
sequence n = {ni }M−1

i=0 ⊂ {1, · · · , N}M , let n−1 = 0, and
S = {i ≥ 0 : ni − ni−1 > 0}. Denote y�[k] to be the number
of stages of the achievable scheme that downloads k-sums
from the nth database in one repetition of the scheme, such
that n�−1 ≤ n ≤ n�, and � ∈ S. Let ξ� = ∏

s∈S\{�}
(M−2

s−1

)
.

The number of stages y�[k] is characterized by the following
system of difference equations:

y0[k] = (n0−1)y0[k−1] +
∑

j∈S\{0}
(n j −n j−1)y j [k−1]

y1[k] = (n1−n0−1)y1[k−1] +
∑

j∈S\{1}
(n j −n j−1)y j [k−1]

y�[k] = n0ξ�δ[k−�−1] + (n�−n�−1−1)y�[k − 1]
+

∑
j∈S\{�}

(n j −n j−1)y j [k−1], � ≥ 2 (13)
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Fig. 1. The noisy PIR (NPIR) problem.

where δ[·] is the Kronecker delta function. The initial con-
ditions of (13) are y0[1] = ∏

s∈S
(M−2

s−1

)
, and y j [k] = 0

for k ≤ j . Then, the achievable rate corresponding to n is
given by:

R(n, C) =
∑

�∈S
∑M

k=1

(M−1
k−1

)
y�[k](n� − n�−1)∑

�∈S
∑n�

n=n�−1+1

∑M
k=1 (M

k )y�[k]
Cn

(14)

Consequently, the capacity CPIR(C) is lower bounded by:
CPIR(C)

≥ R(C)

= max
ni ∈[N] R(n, C) (15)

= max
ni ∈[N]

∑
�∈S

∑M
k=1

(M−1
k−1

)
y�[k](n� − n�−1)∑

�∈S
∑n�

n=n�−1+1

∑M
k=1 (M

k )y�[k]
Cn

(16)

where n0 ≤ n1 ≤ · · · ≤ nM−1

The proof of this lower bound is given in Section V.
We have the following remarks3.

3We note that variable ni refers to the index of the last database that exploits
i-sum as side information in its initial round of download. This means that
we have ni − ni−1 databases that exploit i-sum side information symbols in
the initial round of download and have the same uncoded traffic ratio (before
applying the channel code). The user optimizes over ni ∈ {1, · · · , N} to
maximize the PIR retrieval rate. For more details about the notation, please
refer to [38].

Remark 1 The upper and lower bounds for the retrieval rate
are similar to the corresponding bounds for the PIR-WTC-II
problem [39] after replacing the secrecy capacity of WTC-II,
1−μn, with the capacity of the noisy link Cn. Thus, the NPIR
problem inherits all the structural remarks of the PIR-WTC-II
problem.

Remark 2 The upper and lower bounds for the retrieval rate
do not depend explicitly on the transition probabilities of the
noisy channels p(yn|xn), but rather depend on the capacities
of the noisy channels Cn.

Remark 3 Theorem 1 and Theorem 2 imply that the channel
coding needed for combating channel errors is “almost seper-
able" from the retrieval scheme. More specifically, the expres-
sions for the upper and lower bounds are separable in terms
of the privacy and channel effects, as both expressions depend
directly on Cn for all n, which suggests applying the capacity
achieving code for each noisy channel for the output of the
private retrieval scheme. The channel coding problem and
the retrieval problem are coupled only through agreeing on
a traffic ratio vector τ . Other than τ , the channel coding acts
as an outer code for the responses of the databases to the user
queries. Interestingly, the result implies that our schemes work
even for heterogeneous channels, e.g., if N = 2, the channel
from one database can be a BSC, and the channel from the
other database can be a BEC.
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Remark 4 Our results imply that randomized strategies for
PIR cannot increase the retrieval rate. We can view the noisy
channel between the user and the database as a randomizer
for the actions of the databases, which is available to the
databases but not available to the user. Since the capacity
expression does not depend on p(yn|xn) and is always maxi-
mized by Cn = 1, any randomizing strategy p(yn|xn) cannot
enhance the retrieval rate, even if the databases can choose
the transition probability distributions p(yn|xn).

Corollary 1 (Exact capacity for M = 2 and M = 3
messages) For NPIR, the capacity CPIR(C) for M = 2, and
an arbitrary N is given by:

C(C) = max
ni ∈[N]

n0n1∑n0
n=1

n0+1
Cn

+∑n1
n=n0+1

n0
Cn

(17)

and for M = 3, C(C) is given by,

max
ni ∈[N]

n0n1n2
n0∑

n=1

n0n1+n0+1

Cn
+

n1∑
n=n0+1

n0n1+n0

Cn
+

n2∑
n=n1+1

n0n1

Cn

(18)

Remark 5 As we will show in Section V, the retrieval scheme
operates at one of the corner points of the PIR problem
with asymmetric traffic constraints [38]. Here, we state the
uncoded traffic (before applying the channel code) returned
from the databases. The uncoded traffic ratio τn is a function
of the sequence n = (n0, n1, n2), which is specified by
carrying out the optimization problem in (15), (17) and (18).
Therefore, referring to [38, Section 6], for the case of M = 2,
the uncoded traffic ratios from the databases are:

τn =
⎧⎨
⎩

n0
n0(n1+1) , 1 ≤ n ≤ n0

1
n1+1 , n0 + 1 ≤ n ≤ n1

0, n > n1

(19)

For M = 3, the uncoded traffic ratios are:

τn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n0n1+n0+1
n0(n2n1+n1+1) , 1 ≤ n ≤ n0

n1+1
n2n1+n1+1 , n0 + 1 ≤ n ≤ n1

n1
n2n1+n1+1 , n1 + 1 ≤ n ≤ n2

0, n > n2

(20)

The proof of Corollary 1 follows from the optimality of the
PIR-WTC-II scheme in [39] for M = 2 and M = 3 messages
by replacing 1 − μn by Cn .

a) Example: The capacity for NPIR from BSC(p1),
BSC(p2), N = 2, M = 3: To show how Theorem 1 reduces
to Corollary 1 for M = 3, we apply Theorem 1 to the case
of M = 3, N = 2, and the links to the user are BSC(p1), and
BSC( p2). From Theorem 1, we can write the upper bound for
the achievable retrieval rate as:

max
τ∈T

min
ni ∈{1,2}

∑N
n=1 τnCn +

∑N
n=n1+1 τn Cn

n1
+

∑N
n=n2+1 τn Cn

n1n2

1 + 1
n1

+ 1
n1n2

(21)

where Cn = 1 − H (pn).

By observing τ2 = 1 − τ1 and the fact that Cn is monoton-
ically decreasing in pn for pn ∈ (0, 1

2 ) (which implies that
p1 ≤ p2 satisfies C1 ≥ C2), (21) can be explicitly written as
the following linear program:
max
τ2,R

R

s.t. R ≤ 1

3
(1−H (p1))+

[
(1 − H (p2))− 1

3
(1−H (p1))

]
τ2

R ≤ 2

5
(1−H (p1))+

[
4

5
(1−H (p2))− 2

5
(1−H (p1))

]
τ2

R ≤ 4

7
(1−H (p1))+

[
4

7
(1−H (p2))− 4

7
(1−H (p1))

]
τ2

0 ≤ τ2 ≤ 1 (22)

The bound corresponding to n1 = 2, n2 = 1 is inactive for all
values of (p1, p2). Since (22) is a linear program, its solution
resides at the corner points of the feasible region. The first
corner point occurs at τ

(1)
2 = 0, which corresponds to the

upper bound R ≤ 1−H(p1)
3 . The second corner point is at the

intersection of the first two constraints, i.e.,

1

3
(1 − H (p1)) +

[
(1 − H (p2)) − 1

3
(1 − H (p1))

]
τ

(2)
2

= 2

5
(1 − H (p1)) +

[
4

5
(1 − H (p2)) − 2

5
(1 − H (p1))

]
τ

(2)
2

(23)

which leads to,

τ
(2)
2 = 1 − H (p1)

3(1 − H (p2)) + (1 − H (p1))
(24)

which corresponds to the upper bound R ≤ 2
3

1−H (p1) + 1
1−H (p2)

.

Similarly, by observing the intersection between the last
two constraints, we have the following upper bound
R ≤ 4

4
1−H (p1) + 3

1−H (p2)

, which is achieved at τ
(3)
2 =

3(1−H(p1))
4(1−H(p2))+3(1−H(p1))

. Consequently, an explicit upper bound
for the retrieval rate is:

max

{
1−H (p1)

3
,

2
3

1−H(p1) + 1
1−H(p2)

,
4

4
1−H(p1)

+ 3
1−H(p2)

}
(25)

In Section V-A, we will show how these rates can be
achieved, hence (25) is the exact capacity. This capacity result
is illustrated in Fig. 3. The figure shows the partitioning of
the (p1, p2) (by convention p1 ≤ p2) space according to the
active capacity expression. When the ratio 2 < 1−H(p1)

1−H(p2)
≤ 3,

CPIR(p1, p2) = 2
3

1−H (p1) + 1
1−H (p2)

. When the ratio 1−H(p1)
1−H(p2)

≤ 2,

CPIR(p1, p2) = 4
4

1−H (p1) + 3
1−H (p2)

, otherwise, CPIR(p1, p2) =
1−H(p1)

3 . Interestingly, Fig. 3 shows that the dominant strategy
for most (p1, p2) pairs is to rely only on database 1 for the
retrieval process. The capacity function CPIR(p1, p2) is shown
in Fig. 4. The figure shows that the maximum value for the
capacity is CPIR(0, 0) = 4

7 , which is consistent with [11].
The figure also shows that CPIR(0.5, 0.5) = 0, as the answer
strings become independent of the user queries. We observe
that CPIR(0, p2) = 1

3 for p2 ≥ H −1( 2
3 ) = 0.1737, since
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Fig. 2. Circuit analogy for the capacity expression of PIR from BSC(p1),
BSC(p2).

the retrieval is performed only from database 1, which is
connected to the user via a noiseless link.

Remark 6 We will show in Section V that channel coding
and retrieval schemes for NPIR are almost separable. Nev-
ertheless, the final capacity expression couples the capacity
of the noisy channels and the retrieval rates from databases
with noiseless links in a non-trivial way. We illustrate the
capacity expression in (25) by means of circuit theory analogy
in Fig. 2. The current from the current source represents
the number of desired bits, the voltage across the current
source corresponds to the achievable retrieval rate, and the
channel effect of the link connected to the nth database is
abstracted via a parallel resistor, whose value depends on the
capacity of the channel and the total download from the nth
database. We note that the ratio between the denominators
of the resistors corresponds to the ratio between the uncoded
traffic (before applying the channel code) from the databases
(namely, zero traffic from database 2 in Fig 2a, 3 : 1 in Fig. 2b,
and 4 : 3 in Fig. 2c; see also the motivating example
in Section V-A). Intuitively, to maximize the retrieval rate,
the user chooses one of the three circuits in Fig. 2. The circuits
are arranged ascendingly in the number of the desired bits
(namely, 1, 2, 4 bits), while the values of the resistors decrease,
as the total download increases and/or due to adding extra
parallel branch. This results in a tension between conveying

Fig. 3. Partitions of (p1, p2) space according to retrieval rate expression for
M = 3, N = 2.

Fig. 4. Capacity function CPIR(p1, p2) for M = 3, N = 2.

more desired bits and decreasing the equivalent resistor of
the circuit. The capacity-achieving scheme is the one which
maximizes the product of these contradictory effects (i.e., the
voltage).

IV. CONVERSE PROOF FOR NPIR

In this section, we derive a general upper bound for the
NPIR problem. The main idea of the converse hinges on the
fact that the traffic from the databases should be dependent on
the relative channel qualities (i.e., channel capacities) of the
response channels. Thus, we extend the converse proof in [38]
to account for the noisy observations.

We will need the following lemma, which characterizes the
channel effect on the noisy answer strings. The lemma states
that the remaining uncertainty on a subset of answer strings
after revealing the queries and the message set is a sum of
single-letter conditional entropies of the noisy channels over
the lengths of the answer strings. The lemma is a consequence
of the Markov chain (W1:M , Q[m]

1:N , Ã[m]
1:n−1) → A[m]

n → Ã[m]
n .
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Lemma 1 (Channel effect) For any subset S ⊆ {1, · · · , N}
for all m ∈ {1, · · · , M}, the remaining uncertainty on the
noisy answer strings Ã[m]

S given (W1:M , Q[m]
1:N ) is given by,

H ( Ã[m]
S |W1:M , Q[m]

1:N ) =
∑
n∈S

tn∑
ηn=1

H
(

Y [m]
n,ηn

|X [m]
n,ηn

)
(26)

Furthermore, (26) is true if conditioned on the complementary
subset of the noisy answer strings Ã[m]

S̄ , i.e.,

H ( Ã[m]
S |W1:M , Q[m]

1:N , Ã[m]
S̄ ) =

∑
n∈S

tn∑
ηn=1

H
(

Y [m]
n,ηn

|X [m]
n,ηn

)
(27)

where S̄ = {1, · · · , N} \ S.

Proof: We start with the left hand side of (26),

H (Ã[m]
S |W1:M , Q[m]

1:N )

=
∑
n∈S

H ( Ã[m]
n | Ã[m]

1:n−1, W1:M , Q[m]
1:N ) (28)

(4)=
∑
n∈S

H ( Ã[m]
n | Ã[m]

1:n−1, W1:M , Q[m]
1:N , A[m]

n ) (29)

=
∑
n∈S

H ( Ã[m]
n |A[m]

n ) (30)

=
∑
n∈S

tn∑
ηn=1

H (Y [m]
n,ηn

|X [m]
n,1 , · · · , X [m]

n,tn , Yn,1, · · · , Y [m]
n,ηn−1)

(31)

(5)=
∑
n∈S

tn∑
ηn=1

H (Y [m]
n,ηn

|X [m]
n,ηn

) (32)

where (29) follows from the fact that A[m]
n is a deterministic

function of (W1:M , Q[m]
n ), (30) follows from the fact that

(W1:M , Q[m]
1:N , Ã[m]

1:n−1) → A[m]
n → Ã[m]

n is a Markov chain,
(32) follows from the fact that the channel is memoryless.

The proof of (27) follows similarly by observing that
(W1:M , Q[m]

1:N , Ã[m]
1:n−1, Ã[m]

S̄ ) → A[m]
n → Ã[m]

n is a Markov
chain as well. �

We need the following lemma which upper bounds the
mutual information between the noisy answer strings and the
interfering messages with a linear function of the channel
capacities.

Lemma 2 (Noisy interference bound) For NPIR, the mut-
ual information between the interfering messages W2:M and
the noisy answer strings Ã[1]

1:N given the desired message W1
is upper bounded by,

I
(

W2:M ; Q[1]
1:N , Ã[1]

1:N |W1

)
≤

N∑
n=1

tnCn − L + o(L) (33)

Proof: We start with the left hand side of (33),

I (W2:M ; Q[1]
1:N , Ã[1]

1:N |W1)

(2)= I
(

W2:M ; W1, Q[1]
1:N , Ã[1]

1:N
)

(34)

=I
(

W2:M ; Q[1]
1:N , Ã[1]

1:N
)
+ I

(
W2:M ; W1|Q[1]

1:N , Ã[1]
1:N

)
(35)

(9)≤ I
(

W2:M ; Q[1]
1:N , Ã[1]

1:N
)

+ o(L) (36)

(3)= I
(

W2:M ; Ã[1]
1:N |Q[1]

1:N
)

+ o(L) (37)

=H
(

Ã[1]
1:N |Q[1]

1:N
)

− H
(

Ã[1]
1:N |W2:M , Q[1]

1:N
)

+ o(L) (38)

=H
(

Ã[1]
1:N |Q[1]

1:N
)

− H
(

Ã[1]
1:N , W1|W2:M , Q[1]

1:N
)

+ H
(

W1|W2:M , Q[1]
1:N , Ã[1]

1:N
)

+ o(L) (39)

(9)≤H
(
Ã[1]

1:N |Q[1]
1:N

)
−H

(
Ã[1]

1:N , W1|W2:M , Q[1]
1:N

)
+o(L) (40)

=H
(

Ã[1]
1:N |Q[1]

1:N
)

− H
(

W1|W2:M , Q[1]
1:N

)
− H

(
Ã[1]

1:N |W1:M , Q[1]
1:N

)
+ o(L) (41)

(26)≤
N∑

n=1

tn∑
ηn=1

[
H
(

Y [1]
n,ηn

)
− H

(
Y [1]

n,ηn
|X [1]

n,ηn

)]
− L + o(L)

(42)

=
N∑

n=1

tn∑
ηn=1

I
(

X [1]
n,ηn

; Y [1]
n,ηn

)
− L + o(L) (43)

≤
N∑

n=1

tnCn − L + o(L) (44)

where (34) follows from the independence of the mes-
sages, (36), (40) follow from the decodability of W1
given (Q[1]

1:N , Ã[1]
1:N ), (37) follows from the independence

of (W2:M , Q[1]
1:N ), (42) follows from the independence of

(W1, W2:M , Q[1]
1:N ), Lemma 1, and the fact that condition-

ing cannot increase entropy, (44) follows from the fact that
I
(

X [m]
n,ηn ; Y [m]

n,ηn

)
≤ Cn by the definition of the nth channel

capacity. �
Finally, in order to capture the recursive structure of the

problem in terms of the messages and to express the potential
asymmetry of the optimal scheme, we will need the following
lemma, which inductively lower bounds the mutual informa-
tion term in Lemma 2. The lemma implies that nm−1 databases
can apply a symmetric scheme when the retrieval problem is
reduced to retrieving message Wm−1 from the set of Wm−1:M
messages. For the remaining answer strings, we directly bound
them by their corresponding length of the unobserved portion∑N

n=nm−1+1 tnCn .

Lemma 3 (Noisy induction lemma) For all m ∈ {2, . . . ,
M} and for an arbitrary nm−1 ∈ {1, · · · , N}, the mutual infor-
mation term in Lemma 2 can be inductively lower bounded as,

I
(

Wm:M ; Q[m−1]
1:N , Ã[m−1]

1:N |W1:m−1

)
≥ 1

nm−1
I
(

Wm+1:M ; Q[m]
1:N , Ã[m]

1:N |W1:m
)

+ 1

nm−1

⎛
⎝L −

N∑
n=nm−1+1

tnCn

⎞
⎠ − o(L)

nm−1
(45)
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Proof: We start with the left hand side of (45) after multiply-
ing by nm−1,

nm−1 I
(

Wm:M ; Q[m−1]
1:N , Ã[m−1]

1:N |W1:m−1

)
≥ nm−1 I

(
Wm:M ; Q[m−1]

1:nm−1
, Ã[m−1]

1:nm−1
|W1:m−1

)
(46)

≥
nm−1∑
n=1

I
(

Wm:M ; Q[m−1]
n , Ã[m−1]

n |W1:m−1

)
(47)

(8)=
nm−1∑
n=1

I
(

Wm:M ; Q[m]
n , Ã[m]

n |W1:m−1

)
(48)

(3)=
nm−1∑
n=1

I
(

Wm:M ; Ã[m]
n |Q[m]

n , W1:m−1

)
(49)

=
nm−1∑
n=1

H
(

Ã[m]
n |Q[m]

n , W1:m−1

)
−H

(
Ã[m]

n |Q[m]
n , W1:M

)
(50)

≥
nm−1∑
n=1

H
(

Ã[m]
n | Ã[m]

1:n−1, Q[m]
1:nm−1

, W1:m−1

)

− H
(

Ã[m]
n | Ã[m]

1:n−1, Q[m]
1:nm−1

, W1:M
)

(51)

=
nm−1∑
n=1

I
(

Wm:M ; Ã[m]
n | Ã[m]

1:n−1, Q[m]
1:nm−1

, W1:m−1

)
(52)

= I
(

Wm:M ; Ã[m]
1:nm−1

|Q[m]
1:nm−1

, W1:m−1

)
(53)

(3)= I
(

Wm:M ; Q[m]
1:nm−1

, Ã[m]
1:nm−1

|W1:m−1

)
(54)

(3),(4)= I
(

Wm:M ; Q[m]
1:N , Ã[m]

1:N |W1:m−1

)
− I

(
Wm:M ; Ã[m]

nm−1+1:N |Q[m]
1:N , Ã[m]

1:nm−1
, W1:m−1

)
(55)

= I
(

Wm:M ; Q[m]
1:N , Ã[m]

1:N |W1:m−1

)
− H

(
Ã[m]

nm−1+1:N |Q[m]
1:N , Ã[m]

1:nm−1
, W1:m−1

)
+ H

(
Ã[m]

nm−1+1:N |Q[m]
1:N , Ã[m]

1:nm−1
, W1:M

)
(56)

(27)≥ I
(

Wm:M ; Q[m]
1:N , Ã[m]

1:N |W1:m−1

)

−
N∑

n=nm−1+1

tn∑
ηn=1

[
H
(

Y [m]
n,ηn

)
− H

(
Y [m]

n,ηn
|X [m]

n,ηn

)]
(57)

(9)≥ I
(

Wm:M ; Wm , Q[m]
1:N , Ã[m]

1:N |W1:m−1

)

−
N∑

n=nm−1+1

tn∑
ηn=1

I
(

X [m]
n,ηn

; Y [m]
n,ηn

)
− o(L) (58)

= I (Wm:M ; Wm |W1:m−1)+ I
(
Wm:M ; Q[m]

1:N , Ã[m]
1:N |W1:m

)

−
N∑

n=nm−1+1

tn∑
ηn=1

I
(

X [m]
n,ηn

; Y [m]
n,ηn

)
− o(L) (59)

= I
(

Wm+1:M ; Q[m]
1:N , Ã[m]

1:N |W1:m
)

+
⎛
⎝L −

N∑
n=nm−1+1

tn∑
ηn=1

I
(

X [m]
n,ηn

; Y [m]
n,ηn

)⎞⎠− o(L) (60)

≥ I
(

Wm+1:M ; Q[m]
1:N , Ã[m]

1:N |W1:m
)

+
⎛
⎝L −

N∑
n=nm−1+1

tnCn

⎞
⎠ − o(L) (61)

where (46), (47) follow from the non-negativity of mutual
information, (48) follows from the privacy constraint, (49)
follows from the independence of

(
Wm:M , Q[m]

n

)
, (51)

follows from the fact that conditioning cannot increase
entropy and from the fact that (W1:M , Q[m]

1:nm−1
, Ã[m]

1:n−1) →
(W1:M , Q[m]

n ) → Ã[m]
n forms a Markov chain, (54) follows

from the independence of the messages and the queries, (55)
follows from the chain rule, the independence of the queries
and the messages, and the fact that Q[m]

1:N → Q[m]
1:nm−1

→
Ã[m]

1:nm−1
forms a Markov chain by (4), (57) follows from the

fact that conditioning reduces entropy and Lemma 1, (58)
follows from the reliability constraint, (61) follows from the
definition of the channel capacity. Finally, dividing both sides
by nm−1 leads to (45). �

Now, we are ready to derive an explicit upper bound for
the retrieval rate from noisy channels. Fixing the length of
the nth answer string to tn and applying Lemma 2 and
Lemma 3 successively for an arbitrary sequence {ni }M−1

i=1 ⊂
{1, · · · , N}M−1, we have the following,

N∑
n=1

tnCn − L + õ(L)

(33)≥ I
(

W2:M ; Q[1]
1:N , Ã[1]

1:N |W1

)
(62)

(45)≥ 1

n1

⎛
⎝L−

N∑
n=n1+1

tnCn

⎞
⎠+ 1

n1
I
(

W3:M ; Q[2]
1:N , Ã[2]

1:N |W1:2
)

(63)

(45)≥ 1

n1

⎛
⎝L−

N∑
n=n1+1

tnCn

⎞
⎠+ 1

n1n2

⎛
⎝L−

N∑
n=n2+1

tnCn

⎞
⎠

+ 1

n2
I
(

W4:M ; Q[3]
1:N , Ã[3]

1:N |W1:3
)

(64)

(45)≥ . . .

(45)≥ 1

n1

⎛
⎝L−

N∑
n=n1+1

tnCn

⎞
⎠+ 1

n1n2

⎛
⎝L−

N∑
n=n2+1

tnCn

⎞
⎠

+· · ·+ 1∏M−1
i=1 ni

⎛
⎝L−

N∑
n=nM−1+1

tnCn

⎞
⎠ (65)

where õ(L) =
(

1 + 1
n1

+ 1
n1n2

+ · · · + 1∏M−1
i=1 ni

)
o(L), (62)

follows from Lemma 2, and the remaining bounding steps
follow from successive application of Lemma 3.
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Ordering terms, we have,(
1 + 1

n1
+ 1

n1n2
+· · ·+ 1∏M−1

i=1 ni

)
L

≤
(
θ(0)+ θ(n1)

n1
+· · ·+ θ(nM−1)∏M−1

i=1 ni

)
N∑

n=1

tn +õ(L) (66)

where θ(�) = ∑N
n=�+1 τnCn .

We conclude the proof by taking L → ∞. Thus, for an
arbitrary sequence {ni }M−1

i=1 , we have

R(τ , C) = L∑N
n=1 tn

≤
θ(0) + θ(n1)

n1
+ θ(n2)

n1n2
+ · · · + θ(nM−1)∏M−1

i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1∏M−1
i=1 ni

(67)

Finally, we get the tightest bound by minimizing over the
sequence {ni }M−1

i=1 over the set {1, · · · , N}, as

R(τ , C)

≤ min
ni ∈[N]

θ(0) + θ(n1)
n1

+ θ(n2)
n1n2

+ · · · + θ(nM−1)∏M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1∏M−1
i=1 ni

(68)

= min
ni ∈[N]

∑N
n=1 τnCn +

∑N
n=n1+1 τnCn

n1
+· · ·+

∑N
n=nM−1+1 τn Cn∏M−1

i=1 ni

1 + 1
n1

+ · · · + 1∏M−1
i=1 ni

(69)

The user and the databases can agree on a traffic ratio vector
τ ∈ T = {(τ1, · · · , τN ) : τn ≥ 0 ∀n,

∑N
n=1 τn = 1} that

maximizes R(τ , C), hence the retrieval rate R(C) is upper
bounded by,

R(C) ≤ max
τ∈T

R(τ , C) (70)

leading to the upper bound in Theorem 1.

V. ACHIEVABILITY PROOF FOR NPIR

In this section, we present the achievability proof for
the NPIR problem. We show that by means of the random
coding argument, each database can independently encode
its response such that the probability of error can be made
vanishingly small. The databases use the uncoded responses
as an indexing mechanism for choosing codewords from a
randomly generated codebook. The uncoded responses, which
are the truthful responses to the user queries, vary in length
to maximize the retrieval rate. The query structure builds
on the achievability proofs for PIR under asymmetric traffic
constraints [38].

A. Motivating Example: M = 3, N = 2, via BSC(p1),
BSC(p2)

We illustrate the retrieval scheme for N = 2 databases,
M = 3 messages when the answer strings pass through
BSC( p1) and BSC( p2). We show that the channel coding

(using linear block codes) is almost separable from the
retrieval scheme (which hinges on the result of [38]). We begin
with the case when (p1, p2) = (0.1, 0.2), then we extend this
technique for all (p1, p2) pairs. We will need the following
lemma, which shows the achievability of Shannon’s channel
coding theorem for BSC using linear block codes [44, Theo-
rem 4.17, Corollary 4.18].

Lemma 4 (Shannon’s coding theorem for BSC [44]) For
BSC(p) with crossover probability p ∈ (0, 1

2 ). Let n, k be
integers such that R = k

n < 1 − H (p), and let EC[Pe(C)]
denote the expected probability of error Pe(C) calculated
over all linear [n, k] codes C, assuming a nearest-codeword
decoder. Then,

EC[Pe(C)] < 2 · 2−n�(p,R) (71)

for some �(p, R) > 0. Moreover, for all ρ ∈ (0, 1], all but
less than ρ of the linear [n, k] codes satisfy,

Pe(C) <
2

ρ
· 2−n�(p,R) (72)

The result implies that as long as the rate of the linear [n, k]
code is strictly less than the capacity, then there exists a linear
[n, k] code with exponentially decreasing probability of error
in n with high probability.

1) Achievable Scheme for BSC(0.1), BSC(0.2): Now,
we focus on the case when (p1, p2) = (0.1, 0.2). Using the
explicit upper bound in (25), we infer that R ≤ 4

4
1−H (p1) + 3

1−H (p2)

which is 0.2183 for p1 = 0.1, p2 = 0.2. To operate at τ2 =
τ

(3)
2 = 3(1−H(p1))

4(1−H(p2))+3(1−H(p1))
, we enforce the ratio between

the uncoded traffic, i.e., before channel coding, to be 4 : 3.
This results in coded traffic ratio of 4

1−H(p1)
: 3

1−H(p2)
, which

appears in the denominator of the upper bound. Concurrently,
this results in retrieving 4 desired bits per scheme repetition,
which appears in the numerator.

To that end, the user repeats the following retrieval scheme
for ν times. Each repetition of the scheme operates over
blocks of L∗ = 4 bits from all messages W1:3. The user
permutes the indices of the bits of each message independently
and uniformly. Let ai ( j), bi ( j), ci ( j) denote the i th bit of
block j from the permuted message W1, W2, W3, respectively.
Assume without loss of generality that the desired file is W1.
In block j , the user requests to download a single bit from each
message from database 1, i.e., the user requests to download
a1( j), b1( j), and c1( j) from database 1. From database 2,
the user exploits the side information generated from data-
base 1 by requesting to download the sums a2( j) + b1( j),
a3( j)+ c1( j), and b2( j)+ c2( j). Finally, the user exploits the
side information generated from database 1 by downloading
a4( j) + b2( j) + c2( j) from database 2. The query table for
the j th block is summarized in Table I. Denote the number
of uncoded bits requested from the nth database by Dn , then
D1 = 4, D2 = 3. This guarantees that the ratio between the
uncoded traffic is 4 : 3 (for any number of repetitions ν). This
query structure is private, as all combinations of the sums are
included in the queries and the indices of the message bits
are uniformly and independently permuted for each block of
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TABLE I

THE QUERY TABLE FOR THE j TH BLOCK
OF M = 3, N = 2, p1 = 0.1, p2 = 0.2

messages (which operate on different set of bits), the privacy
constraint is satisfied.

After receiving the queries of the user, the nth database
concatenates the uncoded binary answer strings into a vector
U [1]

n of length νDn , i.e.,

U [1]
1 =[a1(1) b1(1) c1(1) a4(1) + b2(1) + c2(1)

· · · a1(ν) b1(ν) c1(ν) a4(ν) + b2(ν) + c2(ν)]T

(73)

U [1]
2 =[a2(1) + b1(1) a3(1) + c1(1) b2(1) + c2(1)

· · · a2(ν) + b1(ν) a3(ν) + c1(ν) b2(ν) + c2(ν)]T

(74)

The nth database encodes the vector U [1]
n to a coded answer

string A[1]
n of length tn using a (tn, νDn) linear block code

(which belongs to the set of good codes that satisfy (72)) such
that:

tn =
⌈

νDn

1 − H (pn)

⌉
(75)

This ensures that ν Dn
tn

< 1−H (pn). The nth database responds

with A[1]
n via the noisy channel BSC(pn). The user receives

the noisy answer string Ã[1]
n from the nth database.

To perform the decoding, the user employs the nearest-
codeword decoder to find an estimate of A[1]

n based on the
observation Ã[1]

n . Since ν Dn
tn

< 1 − H (pn), using Lemma 4
and the union bound, the probability of error in decoding is
upper bounded by:

Pe(L) ≤ Pe(C1) + Pe(C2) (76)

≤ 2

ρ

[
2
−t1�

(
p1,

ν D1
t1

)
+ 2

−t2�
(

p2,
ν D2

t2

)]
(77)

As ν → ∞, L → ∞ and tn → ∞, we have Pe(L) → 0.
This ensures the decodability of U [1]

n with high probability.
Since the vectors U [1]

1 , U [2]
2 are designed to exploit the side

information, the user can cancel the effect of the undesired
messages and be left only with the correct W1 with probability
of error Pe(L). This satisfies the reliability constraint.

Finally, we calculate the achievable retrieval rate. The
retrieval scheme decodes L = νL∗ = 4ν bits from the desired
messages. The retrieval scheme downloads tn =

⌈
ν Dn

1−H(pn)

⌉

TABLE II

THE QUERY TABLE FOR THE j TH BLOCK OF M = 3,
N = 2 TO ACHIEVE R = 2

3
1−H (p1) + 1

1−H (p2)

bits from the nth database, hence as ν → ∞, we have

R = L

t1 + t2
(78)

= νL∗
ν D1

1−H(p1)
+ ν D2

1−H(p2)

(79)

= 4
4

1−H(p1)
+ 3

1−H(p2)

= 0.2183 (80)

which matches the upper bound.
2) Achieving the Upper Bound for Arbitrary (p1, p2): Now,

we show that the upper bound in (25) is achievable for any
(p1, p2). The idea is to design the uncoded response vectors
U [1]

1 , U [2]
2 such that the ratio of their traffic matches one of

the corner points of the PIR problem under asymmetric traffic
constraints [38].

a) For R = 1−H(p1)
3 : For this rate, the user requests to

download from database 1 only and does not access database 2.
Thus, the user downloads all the contents of database 1 to
satisfy the privacy constraint. Specifically, the user downloads
a1( j), b1( j), c1( j) at the j th block of the retrieval process.
Database 1 encodes the responses U [1]

1 into t1-length answer

string using (t1, νD1), where D1 = 3, and t1 =
⌈

ν D1
1−H(p1)

⌉
.

The user decodes ν desired symbols from ν repetitions with
vanishingly small probability of error. Consequently, R =
1−H(p1)

3 .
b) For R = 2

3
1−H (p1) + 1

1−H (p2)

: For this rate, the user

designs the queries such that the traffic ratio between the
uncoded responses is 3 : 1. Thus, in the j th block, the user
requests to download one bit from each message, i.e., the
user requests to download a1( j), b1( j), c1( j) from database 1.
The user mixes the undesired information obtained from
database 1 into one combined symbol b1( j) + c1( j) and uses
this symbol as a side information in database 2 by requesting
to download a2( j) + b1( j) + c1( j). The query table for the
j th block of the scheme is depicted in Table II.

After repeating the retrieval process ν times, data-
base 1 encodes the responses using a linear (t1, νD1) =(⌈

3ν
1−H(p1)

⌉
, 3ν

)
code, while database 2 encodes its responses

using a linear (t2, νD2) =
(⌈

ν
1−H(p2)

⌉
, ν
)

code. Using
Lemma 4, the user can decode the correct W1 with vanishingly
small probability of error. The user decodes L = 2ν bits from
W1, hence, as ν → ∞

R = L

t1 + t2
= 2

3
1−H(p1)

+ 1
1−H(p2)

(81)
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c) For R = 4
4

1−H (p1) + 3
1−H (p2)

: An instance for this

scheme is the (p1, p2) = (0.1, 0.2) example. Please refer to
Section V-A.1 for the details.

Therefore, the capacity of the PIR problem from BSC( p1),
BSC( p2) is given by:
CPIR(p1, p2)

=max

{
1−H (p1)

3
,

2
3

1−H(p1) + 1
1−H(p2)

,
4

4
1−H(p1) + 3

1−H(p2)

}

B. General Achievable Scheme

In this section, we present a general achievable scheme for
the NPIR problem. The main idea of the scheme is to use the
uncoded response from the nth database to user’s query as an
index for choosing the transmitted codeword from a codebook
generated according to the optimal probability distribution.
The query structure maps to one of the corner points of PIR
under asymmetric traffic constraints [38] in order to maximize
the retrieval rate.

Following the notations in [38], we denote the number
of side information symbols that are used simultaneously in
the initial round of downloads at the nth database by sn ∈
{0, 1, · · · , M − 1}, e.g., if sn = 1, then the user requests to
download a sum of 1 desired symbol and 1 undesired symbol
as a side information in the form of a + b, a + c,... etc.,
while sn = 2 implies that the user mixes every two undesired
symbols to form one side information symbol, i.e., the user
requests to download a+b+c, a+c+d ,... etc. For a given non-
decreasing sequence {ni }M−1

i=0 ⊂ {1, · · · , N}M , the databases
are divided into groups, such that group 0 contains database
1 through database n0, group 1 contains n1 − n0 databases
starting from database n0 + 1, and so on.

Hence, let sn = i for all ni−1 +1 ≤ n ≤ ni with n−1 = 0 by
convention. Denote S = {i : sn = i for some n ∈ {1, · · · , N}}.
We follow the round and stage definitions in [21]. The kth
round is the download queries that admit a sum of k different
messages (k-sum in [11]). A stage of the kth round is a query
block of the kth round that exhausts all

(M
k

)
combinations of

the k-sum. Denote y�[k] to be the number of stages in round k
downloaded from the nth database, such that n�−1 + 1 ≤ n ≤
n�. Our scheme is repeated for ν repetitions. Each repetition
has the same query structure and operates over a block of
message symbols of length L∗. Denote the total requested
symbols from the nth database in one repetition of the scheme
by Dn(n). The details of the achievable scheme are as follows:

1) Codebook construction: According to the optimal
probability distribution p∗(xn) (that maximizes the
mutual information I (Xn; Yn)), the nth database con-
structs a

(
2ν Dn(n), tn(n)

)
codebook Cn at random4,

i.e., p(xn,1, · · · , xn,tn(n)) = ∏tn(n)
ηn=1 p∗(xn,ηn ). Specifi-

cally, the codebook Cn can be written in the form of a

4We note that the databases should have the knowledge about n (or
equivalently the traffic ratio vector τ ). This information should be conveyed
in the queries. The user and the databases exchange the codebooks for every
n prior to the retrieval process.

2ν Dn(n) × tn(n) matrix as:⎡
⎢⎢⎢⎣

x1(1) x2(1) · · · xtn(n)(1)
x1(2) x2(2) · · · xtn(n)(2)

...
...

...
...

x1(2ν Dn(n)) · · · · · · xtn(n)(2ν Dn(n))

⎤
⎥⎥⎥⎦ (82)

where

tn(n) =
⌈

νDn(n)

Cn

⌉
(83)

This ensures that the rate of Cn , ν Dn(n)
tn(n) < Cn to ensure

reliable transmission over the noisy channel. The nth
database reveals the codebook Cn to the user.

2) Initialization at the user side: The user permutes each
message independently and uniformly using a random
interleaver, i.e.,

ωm(i) = Wm(πm(i)), i ∈ {1, · · · , L} (84)

where ωm(i) is the i th symbol of the permuted Wm , πm(·)
is a random interleaver for the mth message that is chosen
independently, uniformly, and privately at the user’s side.

3) Initial download: From the nth database where 1 ≤ n ≤
n0, the user requests to download

∏
s∈S

(M−2
s−1

)
symbols

from the desired message. The user sets the round index
k = 1. I.e., the user requests the desired symbols from
y0[1] = ∏

s∈S
(M−2

s−1

)
different stages.

4) Message symmetry: To satisfy the privacy constraint, for
each stage initiated in the previous step, the user com-
pletes the stage by requesting the remaining

(M−1
k−1

)
k-sum

combinations that do not include the desired symbols,
in particular, if k = 1, the user requests

∏
s∈S

(M−2
s−1

)
individual symbols from each undesired message.

5) Database symmetry: We divide the databases into groups.
Group � ∈ S corresponds to databases n�−1 + 1 to n�.
Database symmetry is applied within each group only.
Consequently, the user repeats step 2 over each group
of databases, in particular, if k = 1, the user downloads∏

s∈S
(M−2

s−1

)
individual symbols from each message from

the first n0 databases (group 1).
6) Exploitation of side information: The undesired symbols

downloaded within the kth round (the k-sums that do not
include the desired message) are used as side information
in the (k + 1)th round. This exploitation of side informa-
tion is performed by requesting to download (k + 1)-sum
consisting of 1 desired symbol and a k-sum of undesired
symbols only that were generated in the kth round. Note
that for the nth database, if sn > k, then this database
does not exploit the side information generated in the
kth round. Consequently, the nth database belonging to
the �th group exploits the side information generated in
the kth round from all databases except itself if sn ≤ k.
Moreover, for sn = k, extra side information can be used
in the nth database. This is due to the fact that the user can
form n0

∏
s∈S\{sn}

(M−2
s−1

)
extra stages of side information

by constructing k-sums of the undesired symbols in round
1 from the databases in group 0.

7) Repeat steps 4, 5, 6 after setting k = k + 1 until k = M .
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8) Repetition of the scheme: Repeat steps 3, · · · , 7 for a total
of ν repetitions.

9) Shuffling the order of the queries: By shuffling the order
of the queries uniformly, all possible queries can be
made equally likely regardless of the message index. This
guarantees the privacy.

10) Encoding the responses to the user’s queries: The nth
database responds to the user queries truthfully. The
nth database concatenates all the responses to the user’s
queries in a vector U [i]

n of length νDn(n). The nth
database uses U [i]

n as an index for choosing a code-
word from Cn , i.e., the index of the codeword and U [i]

n
should be in bijection (e.g., by transforming U [i]

n into a
decimal value). Consequently, the nth database responds
with,

A[i]
n = [x1(U

[i]
n ) x1(U

[i]
n ) · · · xtn(n)(U

[i]
n )]T (85)

C. Privacy, Reliability, and Achievable Rate

a) Privacy: The privacy of the scheme follows from the
privacy of the inherent PIR scheme under asymmetric traffic
constraints. Specifically, for every stage of the kth round
initiated, all

(M
k

)
combinations of the k-sum are included at

each round. Thus, the structure of the queries is the same
for any desired message at any repetition of the achievable
scheme. Due to the random and independent permutation
of each message and the random shuffling of the order of
the queries, all queries are equally likely independent of the
desired message index, and thus the privacy constraint in (8)
is guaranteed.

b) Reliability: The user employs joint typicality decoder5

for every noisy answer string Ã[i]
n to decode the codeword

index. From the channel coding theorem [45, Theorem 7.7.1],
for every rate ν Dn(n)

tn(n) < Cn , there exists a sequence of
(2ν Dn(n), tn(n)) with maximum probability of error Pe(Cn) →
0 as tn(n) → ∞. By letting ν → ∞, we have tn(n) → ∞,
ν Dn(n)

tn(n) < Cn and hence we ensure the existence of a good
code such that Pe(Cn) → 0. By union bound, the probability
of error in decoding the indices of the codewords from every
database is upper bounded by Pe ≤ ∑N

n=1 Pe(Cn) → 0.
Since the index of the codeword is bijective to U [i]

n ,
the probability of error in decoding U [i]

n for n = 1, · · · , N
is vanishingly small. Now, by construction of the queries as
in [38], all side information symbols used in the (k + 1)th
round are decodable in the kth round or from round 1, the user
cancels out these side information and is left with symbols
from the desired message. Consequently, there is no error in
the decoding given that U [i]

n is correct for every n.
c) Achievable Rate: The structure of one repetition of our

scheme is exactly as [38]. The recursive structure is described
using the following system of difference equations that relate
the number of stages in the databases belonging to a specific

5We note that the random coding arguments presented here for the general
case can be readily applied to any noisy channel including the one in the
motivating example, which is BSC. We choose to use the linear block coding
argument for BSC to simplify the presentation of the example.

group as shown in [38, Theorem 2]:

y0[k] = (n0−1)y0[k−1] +
∑

j∈S\{0}
(n j −n j−1)y j [k−1]

y1[k] = (n1−n0−1)y1[k−1] +
∑

j∈S\{1}
(n j −n j−1)y j [k−1]

y�[k] = n0ξ�δ[k−�−1] + (n�−n�−1−1)y�[k − 1]
+

∑
j∈S\{�}

(n j −n j−1)y j [k−1], � ≥ 2 (86)

where y�[k] is the number of stages in the kth round in a
database belonging to the �th group, i.e., for the nth database,
such that n�−1 + 1 ≤ n ≤ n�.

To calculate Dn(n) where n�−1 ≤ n ≤ n�, we note that for
any stage in the kth round, the user downloads

(M−1
k−1

)
desired

symbols from a total of
(M

k

)
downloads. Therefore,

Dn(n) =
M∑

k=1

(
M

k

)
y�[k], n�−1 ≤ n ≤ n� (87)

Thus, the total download
∑N

n=1 tn(n) from all databases
from all repetitions is calculated by observing (83) and ignor-
ing the ceiling operator as ν → ∞,

N∑
n=1

tn(n) =
N∑

n=1

νDn(n)

Cn
(88)

= ν

[ n0∑
n=1

∑M
k=1

(M
k

)
y0[k]

Cn

+
n1∑

n=n0+1

∑M
k=1

(M
k

)
y1[k]

Cn
+ · · ·

⎤
⎦ (89)

= ν
∑
�∈S

n�∑
n=n�−1+1

∑M
k=1

(M
k

)
y�[k]

Cn
(90)

Furthermore, the total desired symbols from all databases from
all repetitions is given by,

L(n) = ν
∑
�∈S

M∑
k=1

(
M − 1

k − 1

)
y�[k](n� − n�−1) (91)

Consequently, the following rate is achievable corresponding
to the sequence n,

R(n, C) =
∑

�∈S
∑M

k=1

(M−1
k−1

)
y�[k](n� − n�−1)∑

�∈S
∑n�

n=n�−1+1

∑M
k=1 (M

k )y�[k]
Cn

(92)

Since this scheme is achievable for every monotone non-
decreasing sequence n = {ni }M−1

i=0 , the following rate is
achievable,

R(C) = max
ni ∈[N]

∑
�∈S

∑M
k=1

(M−1
k−1

)
y�[k](n� − n�−1)∑

�∈S
∑n�

n=n�−1+1

∑M
k=1 (M

k )y�[k]
Cn

(93)

VI. PIR FROM MULTIPLE ACCESS CHANNEL

In this section, we consider the MAC-PIR problem. This
problem is an extension of the NPIR model presented in
Section II which consists of N non-colluding and replicated
databases storing M messages. In MAC-PIR (see Fig. 5),
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the user sends a query Q[i]
n for the nth database to retrieve

Wi privately and correctly. The nth database responds with
an answer string A[i]

n = (X [i]
n,1, · · · , X [i]

n,t ). The user receives a

noisy observation Ã[i]
n = (Y [i]

1 , · · · , Y [i]
t ), where the responses

of the databases (A[i]
1 , A[i]

2 , · · · , A[i]
N ) pass through a discrete

memoryless channel with a transition probability distribution
p(y|x1, · · · , xN ), i.e.,

P
(

Ã[i]|A[i]
1 , A[i]

2 ,· · ·, A[i]
N

)
=

t∏
η=1

p
(

y[i]
η |x [i]

1,η, x [i]
2,η,· · ·, x [i]

N,η

)
(94)

In this sense, the retrieval is performed via a coopera-
tive multiple access channel, as the databases cooperate to
convey the message Wi to a common receiver (the user).
The full cooperation is realized via the user queries. Fur-
thermore, in MAC-PIR, the database responses are mixed
together to have the noisy observation Ã[i] in contrast to
the noisy PIR problem with orthogonal links presented in
Section II.

In MAC-PIR, the user should be able to reconstruct Wi with
vanishingly small probability of error by observing the noisy
and mixed output Ã[i], i.e., the reliability constraint is written
as:

H (Wi |Q[i]
1:N , Ã[i]) ≤ o(L) (95)

and the privacy constraint is written as:
(Q[i]

n , A[i]
n , W1:M ) ∼ (Q[ j ]

n , A[ j ]
n , W1:M ), ∀i, j ∈ {1, · · · , M}

(96)

We observe that we cannot claim that Ã[i] ∼ Ã[ j ] in the MAC-
PIR problem as we claimed for the NPIR problem. This is
due to the fact that the user cannot statistically differentiate
between the responses corresponding to each message and
hence the user cannot decode the desired message. This
is in contrast to the NPIR problem with orthogonal links,
where Ã[i] ∼ Ã[ j ] due to the Markov chain (W1:M , Q[i]

n ) →
A[i]

n → Ã[i]
n .

The retrieval rate for the MAC-PIR is given by:

R = L

t
(97)

and the MAC-PIR capacity is CPIR = sup R over all
retrieval schemes. We note that, without loss of general-
ity, we can assume that all responses from the databases
have the same length t in contrast to the NPIR problem
with orthogonal links. The reason is that the retrieval rate
depends only on the output of the channel and not on the
individual responses of the databases. Hence, even if the
database responses are different in lengths, we can choose
t = maxn∈[N] tn by appending the remaining responses by
dummy symbols.

In the sequel, we discuss the issue of separability of channel
coding and the information retrieval in MAC-PIR via some
examples. Interestingly, we show that the optimal PIR scheme
for the additive MAC and logic conjunction/disjunction MAC,
the channel coding and the retrieval scheme are dependent on

the channel transition probability, and hence channel coding
and retrieval procedure are inseparable.

A. Additive MAC

In the first special case, we consider the additive MAC.
In the additive MAC, at each time instant η, the responses of
the databases are added together (in modulo-2) in addition to
a random variable Zη ∼ Bernoulli(p), which is independent
of (W1:M , Q[i]

1:N ) and corresponds to a random additive noise,
i.e.,

Yη =
N∑

n=1

Xn,η + Zη (98)

The following theorem characterizes the capacity of the
MAC-PIR problem if the channel is restricted to additive
MACs.

Theorem 3 The additive MAC-PIR capacity is,

CPIR = 1 − H (p) (99)

where p ∈ [0, 0.5) is the flipping probability of the additive
noise.

We have the following remarks.

Remark 7 For noiseless additive MAC, i.e., p = 0 and
Yη = ∑N

n=1 Xn,η, the MAC-PIR capacity is CPIR = 1. This
implies that there is no penalty due to the privacy constraint,
i.e., the user can have privacy for free. Interestingly, this is
the first instance where the PIR capacity is independent of the
number of databases N and the number of messages M.

Remark 8 For noiseless additive MAC, i.e., p = 0, sepa-
ration between channel coding and retrieval process is not
optimal unlike the NPIR problem with orthogonal links. In fact,
the retrieval scheme is dependent on the structure of the
channel. To see this, the user generates a random binary vector
h = [h1 h2 · · · hM ] ∈ {0, 1}M . The user sends h to database 1,
flips the i th position of h and sends it to database 2, and
does not send anything to the remaining databases. Thus,
the responses of the databases are,

A[i]
1 =

M∑
m=1

hm Wm (100)

A[i]
2 =

M∑
m=1

hm Wm + Wi (101)

This is exactly the retrieval scheme in [1]. Since the channel
is additive and noiseless, Ã[i] = A[i]

1 + A[i]
2 = Wi . Hence,

the user downloads 1 bit from the channel in order to get
1 bit from the desired file and R = 1. Here, we note that,
the channel performs the processing at the user for free. This
implies that by careful design of queries, the user can exploit
the channel in its favor to maximize the retrieval rate.

Proof: We prove the converse and achievability.
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Fig. 5. The MAC-PIR problem.

a) The converse proof: To show the converse, we assume
that W1 is the desired message without loss of generality. Then,
we have the following implications,

L = H (W1) (102)

(2),(3)= H (W1|W2:M , Q[1]
1:N ) (103)

(95)≤ H (W1|W2:M , Q[1]
1:N )

− H (W1|W2:M , Q[1]
1:N , Ã[1]) + o(L) (104)

= I (W1; Ã[1]|Q[1]
1:N , W2:M ) + o(L) (105)

= H ( Ã[1]|Q[1]
1:N , W2:M )

− H ( Ã[1]|Q[1]
1:N , W1:M ) + o(L) (106)

(4)≤ H ( Ã[1]) − H ( Ã[1]|Q[1]
1:N , W1:M , A[1]

1:N ) + o(L) (107)

= t − H ( Ã[1]|A[1]
1:N ) + o(L) (108)

= t −
t∑

η=1

H (Y [1]
η |X [1]

1,η, X [1]
2,η, · · · , X [1]

N,η) + o(L) (109)

= t −
t∑

η=1

H

(
N∑

n=1

X [1]
n,η + Zη|X [1]

1,η, X [1]
2,η, · · · , X [1]

N,η

)

+ o(L) (110)

= t −
t∑

η=1

H (Zη|X [1]
1,η, X [1]

2,η, · · · , X [1]
N,η) + o(L) (111)

= t (1 − H (p)) + o(L) (112)

where (103) follows from the independence of the messages
and the queries, (104) follows from the reliability constraint,
(107) follows from the fact that the answer string A[1]

n is a
deterministic function of the messages and the queries, (108)
follows from the fact that (W1:M , Q[1]

1:N ) → A[1]
1:N → Ã[1] is a

Markov chain, (109) follows from the fact that the channel
is memoryless, and (112) follows from the independence
of Zη and (X [1]

1,η, X [1]
2,η, · · · , X [1]

N,η) as a consequence of the

independence of (Zη, W1:M , Q[1]
1:N ).

Hence, by reordering terms and taking L → ∞,
we have R = L

t ≤ 1 − H (p). Note that we can inter-
pret the upper bound as the cooperative MAC bound, i.e.,
R ≤ I (Y ; X1, X2, · · · , X N ) = 1 − H (p).

b) The achievability proof: To show the general achiev-
ability, the user submits queries to database 1 and data-
base 2 only and ignores the remaining databases. We note
that the additive MAC in this case boils down to Yη =
X1,η + X2,η + Zη, which means that the channel p(y|x1, x2)
is BSC(p). Consequently, we use again Shannon’s coding
theorem for BSC in Lemma 4.

To that end, let the mth message be a vector Wm =
[Wm(1) Wm(2) · · · Wm(L)] of length L. The user repeats
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the following scheme L times. For the j th repetition of the
scheme, the user generates a random binary vector h( j) =
[h1( j) h2( j) · · · hM ( j)] ∈ {0, 1}M . The user sends the
following queries to the databases:

Q[i]
1 ( j) = h( j) (113)

Q[i]
2 ( j) = h( j) + ei (114)

where ei is the unit vector containing 1 only at the i th position.
The queries are private since Q[i]

n is a vector picked uniformly
from {0, 1}M for any message i .

For the j th repetition of the scheme, the database uses
the received query vector as a combining vector for the j th
element of all messages. The nth database concatenates all
responses in a vector U [i]

n of length L, hence

U [i]
1 =

[
M∑

m=1

hm(1)Wm(1)

M∑
m=1

hm(2)Wm(2)

· · ·
M∑

m=1

hm(L)Wm(L)

]
(115)

U [i]
2 =

[
M∑

m=1

hm(1)Wm(1) + Wi (1)

M∑
m=1

hm(2)Wm(2) + Wi (2)

· · ·
M∑

m=1

hm(L)Wm(L) + Wi (L)

]
(116)

From Lemma 4, for p ∈ (0, 0.5), all but ρ linear [t, L]
block codes C, where L

t = R < 1 − H (p) that have Pe(C) <
2
ρ ·2−t�(p,R). Then, the databases agree on the same [t, L] code

from the family of good codes, where t = L
�1−H(p) . The nth

database encodes U [i]
n independently by the same [t, L] linear

block code to output A[i]
n .

After passing through the noisy channel, the noisy observa-
tion is given by:

Ã[i] = A[i]
1 + A[i]

2 + Z1:t (117)

= Â[i] + Z1:t (118)

Since the two databases employ the same linear block code,
the sum of the two codewords Â[i] = A[i]

1 + A[i]
2 is also a valid

codeword corresponding to the sum U [i]
1 + U [i]

2 .
Consequently, as L → ∞, t → ∞, the probability of error

in decoding the sum U [i]
1 + U [i]

2 is Pe(L) → 0. By observing
that U [i]

1 + U [i]
2 = Wi , the reliability proof follows. �

Remark 9 In the achievability proof, the PIR scheme relies
on the additivity of the channel. In particular, the scheme
uses a linear block code to exploit the fact that the sum
of two codewords from a linear block code is also a valid
codeword. Consequently, the retrieval process depends on the
channel transition probability explicitly as opposed to the
NPIR problem with orthogonal links.

B. Logic Conjunction/Disjunction MACs

In this section, we show that we can achieve privacy for
free for MACs other than the additive MACs. We illustrate this
result by considering the MAC-PIR problem through channels
that output the logical conjunctions (logic AND)/disjunctions
(logic OR) of the inputs. Let ∧ denote the logical conjunction
operator, ∨ denote the logical disjunction operator, and ¬
denote the logical negation operator. The input-output relation
of the discrete memoryless logical conjunction channel is
given as:

Yη =
N∧

n=1

Xn,η (119)

For the logical conjunction channel, we have the following
capacity result.

Theorem 4 In the logical conjunction MAC-PIR problem,
if N ≥ 2M−1, then the MAC-PIR capacity is CPIR = 1, where
M is the number of messages.

We have the following observations:

Remark 10 Similar to the additive MAC, there is no loss due
to the privacy constraint for the conjunction MAC. In this case,
the capacity depends on the number of messages M, and the
number of databases N unlike the additive MAC. Interestingly,
the result shows the first instance of a threshold for the number
of databases at which the full unconstrained capacity can be
achieved N = 2M−1, which is dependent on the number of
messages M.

Remark 11 We note that the minimum number of databases
N that results in CPIR = 1 is still an open problem. In fact,
the capacity for N < 2M−1 is also an interesting open
problem.

Proof: It suffices to show only the achievability for this
problem as the retrieval rate is trivially upper bounded by 1.
To that end, the user submits queries to 2M−1 databases
and submits nothing to the remaining databases. The user
generates the random variables (Z1, · · · , Z M ) independently,
privately, and uniformly from {0, 1}. The random variable
Zm ∼ Bernoulli( 1

2 ) is a Bernoulli random variable that
represents the negation state of the mth message literal in the
first query Q[i]

1 , i.e., if Zm = 1, this means that the user
requests Wm in Q[i]

1 , while Zm = 0 means that the user
requests ¬Wm in Q[i]

1 . Let W̃m be the requested literal from
the mth message in Q[i]

1 , hence,

W̃m =
{

Wm , Zm = 1
¬Wm , Zm = 0

(120)

Now, without loss of generality, assume that W1 is the
desired message. From database 1, the user requests to down-
load the disjunction X1 = ∨M

m=1 W̃m . From every other
database, the user requests the same literal W̃1 with a new
disjunction of the remaining messages with different negation
pattern than what is requested from database 1. I.e., from
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database 2, the user requests the disjunction X2 = W̃1 ∨
¬W̃2 ∨ ∨

m∈[M]\{1,2} W̃m . From database 3, the user requests
the disjunction X3 = W̃1 ∨ ¬W̃3 ∨ ∨

m∈[M]\{1,3} W̃m , · · ·
etc. Denote the disjunction of messages W2:M requested from
the nth database by Fn , where n ∈ {1, · · · , 2M−1}, then the
received observation at the user is

Y =
(

M∨
m=1

W̃m

)

∧
⎛
⎝W̃1 ∨ ¬W̃2 ∨

∨
m∈[M]\{1,2}

W̃m

⎞
⎠

∧
⎛
⎝W̃1 ∨ ¬W̃3 ∨

∨
m∈[M]\{1,3}

W̃m

⎞
⎠ ∧ · · · (121)

= W̃1 ∨
2M−1∧
i=1

Fi (122)

= W̃1 (123)

where (122) follows from successively applying the Boolean
relation (W̃1 ∨ G1) ∧ (W̃1 ∨ G2) = W̃1 ∨ (G1 ∧ G2) for any
logical expressions G1, G2. (123) follows from the fact that
there exist 2M−1 different negation states for the literals from
W2:M , each negation state is requested from one database in
the form of logical expression Fi , hence the conjunction of all
these logical expressions

∧2M−1

i=1 Fi = 0 as all possible product
of sums of W2:M exist in the conjunction. This satisfies the
reliability constraint. Another way to see this result is that the
queries are designed such that they cover exactly half the M-
dimensional Karnaugh map, which can be reduced to either
W1 or ¬W1.

Furthermore, since the negation state for every message
is chosen uniformly, independently, and uniformly for each
message, the probability of receiving specific query from
the user is 1

2M irrespective to the desired message, which
guarantees the privacy. �

a) Illustrative example: M = 3 messages, N = 4
databases with conjunction channel: As an explicit example,
let M = 3, N = 2M−1 = 4, then the user requests the
following:

X1 = W̃1 ∨ W̃2 ∨ W̃3 (124)

X2 = W̃1 ∨ ¬W̃2 ∨ W̃3 (125)

X3 = W̃1 ∨ W̃2 ∨ ¬W̃3 (126)

X4 = W̃1 ∨ ¬W̃2 ∨ ¬W̃3 (127)

Hence, the output of the channel is,

Y = X1 ∧ X2 ∧ X3 ∧ X4 (128)

= (W̃1 ∨ W̃2 ∨ W̃3) ∧ (W̃1 ∨ ¬W̃2 ∨ W̃3)

∧ (W̃1 ∨ W̃2 ∨ ¬W̃3) ∧ (W̃1 ∨ ¬W̃2 ∨ ¬W̃3) (129)

= (W̃1 ∨ (W̃2 ∨ W̃3) ∧ (¬W̃2 ∨ W̃3))

∧ (W̃1 ∨ (W̃2 ∨ ¬W̃3) ∧ (¬W̃2 ∨ ¬W̃3)) (130)

= (W̃1 ∨ W3) ∧ (W̃1 ∨ ¬W̃3) (131)

= W̃1 (132)

Thus, the user can decode W1 from Y as the user knows
the correct negation pattern for W̃1 privately. The scheme is
private as all queries are equally likely with probability 1

8
irrespective to the desired message. Since the user downloads 1
bit to retrieve 1 bit from the desired message, the retrieval
rate R = 1.

Remark 12 We note that the result is still valid if the channel
is replaced by a disjunction channel, i.e.,

Yη =
N∨

n=1

Xn,η (133)

In this case, the user submits the same queries for the
databases with replacing every disjunction operator with a
conjunction operator. The proof of reliability follows from the
duality of the product-of-sum and the sum-of-product.

Remark 13 The achievable scheme for the conjunction
channel is a non-linear retrieval scheme that depends on
the non-linear characteristics of the channel in contrast to
the linear retrieval scheme used for the additive channel.
This confirms the non-separability between the retrieval
scheme and the channel coding needed for reliable communi-
cation through the channel.

C. Selection Channel

In this example, we illustrate the fact that the privacy
for free phenomenon may not be always feasible for any
arbitrary channel in the MAC-PIR problem. To illustrate this,
we consider the selection channel. In this channel, the user
selects to connect to one database only at random and sticks
to it throughout the transmission, i.e.,

Yη = Xn,η, n ∼ uniform {1, · · · , N} (134)

In this channel, the user is connected to the same database
at every channel use. This implies that the user faces a single-
database (N = 1) PIR problem at every channel use. The
optimal PIR strategy for N = 1 is to download all the
messages (M messages) from the connected database. Thus,
the PIR capacity is given by CPIR = 1

M .
It is worth noting that there is another slight variant of the

selection channel, in which the user selects to connect to one
database at random at every channel use, i.e.,

Yη = Xn(η),η, n(η) ∼ uniform {1, · · · , N} (135)

where n(η) corresponds to the database index at channel use
η. Then, CP I R ≤ C = (1 + 1

N + · · · + 1
N M−1 )−1 trivially

as the capacity of the classical PIR C [11], in which all
the databases are connected to the user, is an upper bound
for this problem, as the user can choose to ignore all the
responses except the ones in the classical PIR problem. For
the achievability, the user can repeat the achievable scheme
in [11] ν times, which results in using the selection channel
t = ν L

C = ν N(N M −1)
N−1 . At channel use η, the user chooses a

new query element from Q[i]
n(η) and submits it to database n(η).

As ν → ∞, by strong law of large numbers, each database
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will be visited tn times, where tn → t
N in the limit for every n.

Hence, all bits are decodable by the decodability of the scheme
in [11] and CP I R = C = (1 + 1

N + · · · + 1
N M−1 )−1 < 1 as

well.

VII. CONCLUSION

In this paper, we introduced noisy PIR with orthogonal links
(NPIR), and PIR from multiple access channels (MAC-PIR).
We focused on the issue of the separability of the channel
coding and the retrieval scheme. For the NPIR problem,
we proved that the channel coding and the retrieval scheme are
almost separable in the sense that every database implements
its own channel coding independently from other databases.
The problem is coupled only through agreeing on a suitable
traffic ratio vector to maximize the retrieval rate. On the
other hand, these conclusions are not valid for the MAC-
PIR problem. We showed two examples, namely: PIR from
additive MAC and PIR from logical conjunction/disjunction
MAC. In these examples, we showed that the channel coding
and retrieval schemes are indeed inseparable unlike in the
NPIR problem. In both cases, we showed that by careful
design of joint retrieval and coding schemes, we can attain the
full capacity CP I R = 1 − H (p) and CP I R = 1, respectively,
with no loss due to the privacy constraint.
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